Question : Simplify $\frac{1 + \sin t}{4 - 4 \sin t} - \frac{1 - \sin t}{4 + 4 \sin t}$.
Option 1: $4\tan t .\sin t$
Option 2: $\tan t . \sec t$
Option 3: $\tan t - \sin t$
Option 4: $\tan t + \sin t$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\tan t . \sec t$
Solution : Given: $\frac{1 + \sin t}{4 -4\sin t} - \frac{1 - \sin t}{4 + 4\sin t}$ $=\frac{1 + \sin t}{4(1 - \sin t)} - \frac{1 - \sin t}{4(1 + \sin t)}$ $=\frac{(1 + \sin t)^{2} - (1 - \sin t)^{2}}{4 × (1+ \sin t)(1 - \sin t)}$ $=\frac{4\sin t}{4(1 - \sin^{2} t)}$ $=\frac{\sin t}{\cos^{2} t}$ $=\frac{\sin t}{\cos t} × \frac{1}{\cos t}$ $=\tan t.\sec t$ Hence, the correct answer is $\tan t.\sec t$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Find the value of: $\sqrt{\frac{1 - \sin 3 \theta}{1 + \sin 3 \theta}}$
Question : Simplify the following. $\frac{\sin^3 \alpha+\cos^3 \alpha}{\sin \alpha+\cos \alpha}$
Question : If $\sec A=\frac{5}{4}$, then the value of $\frac{\tan A}{1+\tan ^2 A}-\frac{\sin A}{\sec A}$ is:
Question : Simplify the following expression. $\frac{\sin \theta - 2 \sin ^3 \theta}{2 \cos ^3 \theta - \cos \theta}$
Question : Which of the following is equal to $[\frac{\tan \theta+\sec \theta–1}{\tan \theta–\sec \theta+1}]$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile