Question : Simplify the expression: $\frac{(u–v)^{3}+(v–w)^{3}+(w–u)^{3}}{(u^{2}–v^{2})^{3}+(v^{2}–w^{2})^{3}+(w^{2}–u^{2})^{3}}$
Option 1: $\frac{1}{(u+v)(v+w)(w+u)}$
Option 2: $1$
Option 3: $\frac{3}{(u+v)(v+w)(w+u)}$
Option 4: $0$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{(u+v)(v+w)(w+u)}$
Solution : Given: $\frac{(u–v)^{3}+(v–w)^{3}+(w–u)^{3}}{(u^{2}–v^{2})^{3}+(v^{2}–w^{2})^{3}+(w^{2}–u^{2})^{3}}$ We know that, when $x+y+z=0$, then $x^3+y^3+z^3=3xyz$ So, $(a–b)^{3}+(b–c)^{3}+(c–a)^{3}=3(a–b)(b–c)(c–a)$ Applying this to the given expression, we have, $\frac{3(u–v)(v–w)(w–u)}{3(u^{2}–v^{2})(v^{2}–w^{2})(w^{2}–u^{2})}$ = $\frac{3(u–v)(v–w)(w–u)}{3(u–v)(u+v)(v–w)(v+w)(w–u)(w+u)}$ = $\frac{1}{(u+v)(v+w)(w+u)}$ Hence, the correct answer is $\frac{1}{(u+v)(v+w)(w+u)}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the given expression. $\frac{(4.2)^3-0.008}{(4.2)^2+0.84+0.04}$
Question : Simplify the expression: $\frac{3-\operatorname{\sin}^2 A+\operatorname{\cos}^2 A}{2+2 \operatorname{\cos}^2 A}$
Question : Simplify the expression: $\frac{a+b}{a-b} \div \frac{(a+b)^2}{\left(a^2-b^2\right)}$
Question : Simplify the given expression. $\frac{(381+119)^2+(381-119)^2}{(381)^2+(119)^2}$
Question : Simplify the given expression and find the value for $x=-1$. $\frac{10 x^2+5 x+2 x y+y}{5 x+y}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile