Question : Simplify the expression: $\frac{a+b}{a-b} \div \frac{(a+b)^2}{\left(a^2-b^2\right)}$
Option 1: $–1$
Option 2: $(a + b)$
Option 3: $0$
Option 4: $1$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : Given, $\frac{a+b}{a-b} \div \frac{(a+b)^2}{\left(a^2-b^2\right)}$ $=\frac{(a+b)(a^2-b^2)}{(a-b)(a+b)^2}$ $=\frac{(a+b)(a+b)(a-b)}{(a-b)(a+b)^2}$ $=1$ Hence, the correct answer is $1$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Question : Simplify the given expression. $40 \times 7-2 \times\left(11^3 \div 11\right) \div 22+30$
Question : Simplify the expression: $\frac{3-\operatorname{\sin}^2 A+\operatorname{\cos}^2 A}{2+2 \operatorname{\cos}^2 A}$
Question : Simplify the expression: $\frac{1}{8}\left[\frac{1}{b-1}-\frac{1}{b+1}-\frac{2}{b^2+1}-\frac{4}{b^4+1}\right]$
Question : Simplify the expression: $\frac{(u–v)^{3}+(v–w)^{3}+(w–u)^{3}}{(u^{2}–v^{2})^{3}+(v^{2}–w^{2})^{3}+(w^{2}–u^{2})^{3}}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile