Question : Simplify the expression $\frac{s^2+t^2+2 s t-u^2}{s^2-t^2-2 t u-u^2}$, provided $(s+t+u) \neq 0$.
Option 1: $\frac{s+t-u}{s-t-u}$
Option 2: $\frac{s+t+u}{s-t+u}$
Option 3: $\frac{s-t-u}{s+t-u}$
Option 4: $\frac{s-t+u}{s+t+u}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{s+t-u}{s-t-u}$
Solution : Given: $\frac{(s^2+t^2+2 s t)-u^2}{s^2-(t^2+2 t u+u^2)}$ We know $\small a^2+b^2 +2ab = (a+b)^2$ and $\small a^2+b^2-2ab = (a-b)^2$ So, $\frac{(s^2+t^2+2 s t)-u^2}{s^2-(t^2+2 t u+u^2)}=\frac{(s+t)^2 - u^2}{s^2 - (t+u)^2}$ $=\frac{(s+t+u)(s+t-u)}{(s+t+u)(s-t-u)}$ [using $\small a^2 - b^2 = (a+b)(a-b)$] $=\frac{s+t-u}{s-t-u}$ Hence, the correct answer is $\frac{s+t-u}{s-t-u}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Question : Simplify $\frac{1 + \sin t}{4 - 4 \sin t} - \frac{1 - \sin t}{4 + 4 \sin t}$.
Question : If $(x+\frac{1}{x})\neq 0$ and $(x^3+\frac{1}{x^3})= 0$, then the value $(x+\frac{1}{x})^4$ is:
Question : Simplify the following expression. $\frac{7}{10} \div \frac{3}{7}$ of $\left(2 \frac{3}{10}+2 \frac{3}{5}\right)+\frac{1}{5} \div 1 \frac{2}{5}-\frac{2}{7}$
Question : If $\frac{a^2+b^2}{c^2}=\frac{b^2+c^2}{a^2}=\frac{c^2+a^2}{b^2}=\frac{1}{k}$, $(k\neq 0)$, then $k$=?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile