Question : Simplify the expression $\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$, where $x=2$ and $y=3$.
Option 1: $2\sqrt{6}-6$
Option 2: $\sqrt{6}-5$
Option 3: $5-2\sqrt{6}$
Option 4: $2\sqrt{6}-5$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2\sqrt{6}-5$
Solution : $\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$ Rationalising the denominator, $=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}} \times \frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}$ $=\frac{(\sqrt{x}-\sqrt{y})^2}{(\sqrt{x}+\sqrt{y})\times (\sqrt{x}-\sqrt{y})}$ $=\frac{(\sqrt{x}-\sqrt{y})^2}{x-y}$ Putting $x=2$ and $y=3$ in the equation. $=\frac{(\sqrt2 -\sqrt3)^2}{2-3}$ $=\frac{2+3-2\sqrt6}{-1}$ $=-5+2\sqrt6$ Hence, the correct answer is $2\sqrt6-5$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x=\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}$ and $y=\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}$ then the value of $\frac{x^2-x y+y^2}{x^2+x y+y^2}=$?
Question : Simplify: $\frac{256 x^4-16 y^4}{\left(80 x^2-20 y^2\right)\left(16 x^2+4 y^2\right)}$
Question : If $x+ \sqrt{5} = 5+\sqrt{y}$ are positive integers, then the value of $\frac{\sqrt{x}+y}{x+ \sqrt{y}}$ is:
Question : If $x^4+y^4+x^2 y^2=17 \frac{1}{16}$ and $x^2-x y+y^2=5 \frac{1}{4}$, then one of the values of $(x-y)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile