Question : Simplify the following: $\sin2x+2\sin4x+\sin6x$
Option 1: $4\cos^2x\sin4x$
Option 2: $4\cos^2x\sin x$
Option 3: $2\cos^2x\sin4 x$
Option 4: $4\sin^2 x\sin4 x$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4\cos^2x\sin4x$
Solution : Given: $\sin2x+2\sin4x+\sin6x$ $=\sin2x+\sin6x+2\sin4x$ Using the formula: $\sin C+\sin D=2\sin\frac{(C+D)}{2}\cos\frac{(C–D)}{2}$, we get: $= 2\sin\frac{(6x+2x)}{2}\cos\frac{(6x–2x)}{2}+2\sin4x$ $= 2\sin4x\cos2x+2\sin4x$ $=2\sin4x(\cos2x+1)$ Using formula: $2\cos^2x=\cos2x+1$, we get: $=2\sin4x(2\cos^2x)$ $= 4\cos^2x\sin4x$ Hence, the correct answer is $4\cos^2x\sin4x$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Question : Simplify the following. $\frac{\sin^3 \alpha+\cos^3 \alpha}{\sin \alpha+\cos \alpha}$
Question : Simplify the following expression. $\frac{\sin \theta - 2 \sin ^3 \theta}{2 \cos ^3 \theta - \cos \theta}$
Question : If $\cos x+\sin x=\sqrt{2} \cos x$, what is the value of $(\cos x-\sin x)^2+(\cos x+\sin x)^2$?
Question : Simplify the given expression. $\frac{1+\sin^4 \theta+\cos^4 \theta}{\cos^2 \theta+\sin^4 \theta}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile