Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Option 1: $\cos \left(\frac{\pi}{3}-x\right)$
Option 2: $\sin \left(\frac{\pi}{3}+x\right)$
Option 3: $\cos \left(\frac{\pi}{3}+x\right)$
Option 4: $\sin \left(\frac{\pi}{3}-x\right)$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\cos \left(\frac{\pi}{3}+x\right)$
Solution : Given, $\frac{\cos x-\sqrt{3} \sin x}{2}$ = $\frac{1}{2} \cos x-\frac{\sqrt3}{2}\sin x$ = $\cos x \cos \frac{\pi}{3} - \sin \frac{\pi}{3} \sin x$ [$\because\cos \frac{\pi}{3}=\frac{1}{2}$ and $\sin \frac{\pi}{3}=\frac{\sqrt3}{2}$] = $\cos( \frac{\pi}{3}+x)$ Hence, the correct answer is $\cos( \frac{\pi}{3}+x)$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In $\triangle{XYZ}$, right-angled at $Y$, if $\sin X = \frac{1}{2}$, find the value of $\cos X \cos Z + \sin X \sin Z$.
Question : If A is an acute angle, the simplified form of $\frac{\cos (\pi-A) \cdot \cot \left(\frac{\pi}{2}+A\right) \cos (-A)}{\tan (\pi+A) \tan \left(\frac{3 \pi}{2}+A\right) \sin (2 \pi-A)}$ is:
Question : If $\cos x+\sin x=\sqrt{2} \cos x$, what is the value of $(\cos x-\sin x)^2+(\cos x+\sin x)^2$?
Question : If $\tan \frac{A}{2}=x$, then find $x$.
Question : If $\sec x- \cos x$ = 4, then what will be the value of $\frac{\left(1+\cos ^2x\right)}{\cos x}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile