Question : Simplify the following expression. $\frac{\sin \theta - 2 \sin ^3 \theta}{2 \cos ^3 \theta - \cos \theta}$
Option 1: $\tan \theta$
Option 2: $\sin \theta$
Option 3: $\sec \theta$
Option 4: $\cos \theta$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\tan \theta$
Solution : Given: $\frac{\sin \theta - 2 \sin ^3 \theta}{2 \cos ^3 \theta - \cos \theta}$ $=\frac{\sin \theta(1 -2 \sin ^2\theta)}{\cos \theta( 2 \cos ^2\theta - 1)}$ $=\frac{\sin \theta(\sin ^2\theta + \cos^2\theta - 2 \sin ^2\theta)}{\cos \theta( 2\cos ^2\theta - \sin ^2\theta - \cos^2\theta)}$ [as $\sin ^2\theta +\cos^2\theta = 1$] $=\frac{\sin\theta(\cos^{2}\theta - \sin^{2}\theta)}{\cos\theta(\cos^{2}\theta - \sin^{2}\theta)}$ $=\tan \theta$ Hence, the correct answer is $\tan \theta$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Which of the following is equal to $[\frac{\tan \theta+\sec \theta–1}{\tan \theta–\sec \theta+1}]$?
Question : The expression $\frac{(1-\sin \theta+\cos \theta)^2(1-\cos \theta) \sec ^3 \theta\; {\operatorname{cosec}}^2 \theta}{(\sec \theta-\tan \theta)(\tan \theta+\cot \theta)}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : $\frac{1+\sin \theta}{\cos \theta}$ is equal to which of the following (where $\left.\theta \neq \frac{\pi}{2}\right)?$
Question : Which of the following is equal to $[\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}]$?
Question : Simplify the given expression. $\frac{1+\sin^4 \theta+\cos^4 \theta}{\cos^2 \theta+\sin^4 \theta}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile