Question : Simplify the following expression: $\frac{1-\sin A}{\cos A}+\frac{\cos A}{1-\sin A}$
Option 1: $2 \cos A$
Option 2: $2 \tan A$
Option 3: $2 \sec A$
Option 4: $2 \sin A$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2 \sec A$
Solution : $\frac{1-\sin A}{\cos A}+\frac{\cos A}{1-\sin A}$ $=\frac{(1-\sin A)^2+\cos^2A}{\cos A(1-\sin A)}$ $=\frac{1+\sin^2 A-2\sin A+\cos^2A}{\cos A(1-\sin A)}$ $=\frac{1+1 -2\sin A}{\cos A(1-\sin A)}$ $=\frac{2 -2\sin A}{\cos A(1-\sin A)}$ $=\frac{2(1 -\sin A)}{\cos A(1-\sin A)}$ $=\frac{2}{\cos A}$ $=2\sec A$ Hence, the correct answer is $2\sec A$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of the expression: $\sin A(1+\frac{\sin A}{\cos A})+\cos A(1+\frac{\cos A}{\sin A})$?
Question : Find the value of $\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}+2$.
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Question : Simplify the given expression. $\sqrt{\frac{1+\cos P}{1-\cos P}}$
Question : Find the value of the following expression $\frac{(1+\sec\phi)}{\sec\phi}(1-\cos\phi)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile