Question : Simplify the following expression. $\frac{x^2-2 x-63}{x^2+14 x+49}$
Option 1: $\frac{x+9}{x+7}$
Option 2: $\frac{x-7}{x+7}$
Option 3: $\frac{x+7}{x-7}$
Option 4: $\frac{x-9}{x+7}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{x-9}{x+7}$
Solution : Given: $\frac{x^2-2 x-63}{x^2+14 x+49}$ = $\frac{(x^2-2 x+1)-64}{x^2+2×x×7+7^2}$ = $\frac{(x-1)^2-8^2}{(x+7)^2}$ = $\frac{(x+7)(x-9)}{(x+7)^2}$ = $\frac{(x-9)}{(x+7)}$ Hence, the correct answer is $\frac{(x-9)}{(x+7)}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Simplify the following expression. $(2 \times 7-5+9 \div 3) \div(4+2)^2 \times 2$
Question : Simplify the following expression. $\frac{7}{10} \div \frac{3}{7}$ of $\left(2 \frac{3}{10}+2 \frac{3}{5}\right)+\frac{1}{5} \div 1 \frac{2}{5}-\frac{2}{7}$
Question : Simplify the following expression. $(4 x + 1)^2 - (4 x + 3)(4 x - 1)$
Question : If $x+\frac{1}{x}=17,$ what is the value of $\frac{x^{4}+\frac{1}{x^{2}}}{x^{2}-3x+1}\; ?$
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile