Question : Simplify the following expression. $\frac{7}{10} \div \frac{3}{7}$ of $\left(2 \frac{3}{10}+2 \frac{3}{5}\right)+\frac{1}{5} \div 1 \frac{2}{5}-\frac{2}{7}$
Option 1: $-\frac{4}{21}$
Option 2: $\frac{5}{21}$
Option 3: $\frac{4}{21}$
Option 4: $-\frac{5}{21}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4}{21}$
Solution : $\frac{7}{10} \div \frac{3}{7}$ of $\left(2 \frac{3}{10}+2 \frac{3}{5}\right)+\frac{1}{5} \div 1 \frac{2}{5}-\frac{2}{7}$ Converting mixed fractions to fractions, = $\frac{7}{10} \div \frac{3}{7}$ of $\left(\frac{23}{10}+\frac{13}{5}\right)+\frac{1}{5} \div \frac{7}{5}-\frac{2}{7}$ Applying BODMAS, we get = $\frac{7}{10} \div \frac{3}{7}\ $ of $ (\frac{49}{10})+\frac{1}{5} \div \frac{7}{5}-\frac{2}{7}$ = $\frac{7}{10} \div (\frac{21}{10})+\frac{1}{7}-\frac{2}{7}$ = $\frac{1}{3}-\frac{1}{7}$ = $\frac{4}{21}$ Hence, the correct answer is $\frac{4}{21}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Simplify the following equation. What is the difference between the two values of $x$? $7 x+4\left\{x^2 \div(5 x \div 10)\right\}-3\left\{5 \frac{1}{3}-x^3 \div\left(3 x^2 \div x\right)\right\}=0$
Question : The value of $\left(2 \frac{6}{7}\right.$ of $\left.4 \frac{1}{5} \div \frac{2}{3}\right) \times 5 \frac{1}{9} \div\left(\frac{3}{4} \times 2 \frac{2}{3}\right.$ of $\left.\frac{1}{2} \div \frac{1}{4}\right)$ is:
Question : The value of $\left(1 \frac{1}{3} \div 2 \frac{6}{7}\right.$ of $\left.5 \frac{3}{5}\right) \times\left(6 \frac{2}{5} \div 4 \frac{1}{2}\right.$ of $\left.5 \frac{1}{3}\right) \div\left(\frac{3}{4} \times 2 \frac{2}{3} \div \frac{5}{9}\right.$ of
Question : Simplify the following expression. $(2 \times 7-5+9 \div 3) \div(4+2)^2 \times 2$
Question : The value of $51 \div\left\{25+(25\right.$ of $12 \div 30)-\left(5^4 \div 5\right.$ of 125$\left.)\right\}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile