Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Option 1: $\frac{1}{\cos ^2 A\left(1+\sin ^2 A\right)}$
Option 2: $\frac{1}{\sin ^2 A\left(1-\sin ^2 A\right)}$
Option 3: $\frac{1}{\sin ^2 A+\operatorname{cosec}^2 A}$
Option 4: $\frac{1}{\sin ^2 A\left(1+\cos ^2 A\right)}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{\sin ^2 A\left(1-\sin ^2 A\right)}$
Solution : $(1+\tan ^2 A)(1+\cot ^2 A)$ = $\sec^2 A × \operatorname{cosec}^2 A$ = $\frac{1}{\cos^2 A} × \frac{1}{\sin^2 A}$ = $\frac{1}{\sin^2 A(1-\sin^2 A)}$ Hence, the correct answer is $\frac{1}{\sin^2 A(1-\sin^2 A)}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the given equation: $\frac{\cot^3A–1}{\cot A–1}$
Question : Simplify the given expression. $\sqrt{\frac{1+\cos P}{1-\cos P}}$
Question : If $\operatorname{cosec} A+\cot A=a \sqrt{b}$, then find the value of $\frac{\left(a^2 b-1\right)}{\left(a^2 b+1\right)}$.
Question : The given expression is equal to: $1-\frac{\tan ^2 \phi}{\sec ^2 \phi}$
Question : The value of $\frac{1+\sin A}{\cos A}+\frac{\cos A}{1+\sin A}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile