Question : Simplify the given equation: $\frac{\cot^3A–1}{\cot A–1}$
Option 1: $\operatorname{cosec}^2 \mathrm{A}-\cot \mathrm{A}$
Option 2: $\operatorname{cosec}^2 A+\cot A$
Option 3: $\cot ^2 \mathrm{A}+\operatorname{cosec} \mathrm{A}$
Option 4: $\cot ^2 \mathrm{A}-\operatorname{cosec} \mathrm{A}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\operatorname{cosec}^2 A+\cot A$
Solution : Given: $\frac{\cot^3A–1}{\cot A–1}$ = $\frac{(\cot A–1)(\cot^2A+\cot A+1)}{(\cot A–1)}$ = $\cot^2A+\cot A+1$ = $\operatorname{cosec^2}A+\cot A$ Hence, the correct answer is $\operatorname{cosec}^2 A+\cot A$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{1+\tan A}{\operatorname{cosec} A}+\frac{1+\cot A}{\sec A}$?
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : Simplify the given expression. $\sqrt{\frac{1+\cos P}{1-\cos P}}$
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile