Question : Simplify the given expression. $\sqrt{\frac{1+\cos P}{1-\cos P}}$
Option 1: $\operatorname{cosec}P-\cot P$
Option 2: $\sec P-\tan P$
Option 3: $\sec P+\tan P$
Option 4: $\operatorname{cosec} P+\cot P$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\operatorname{cosec} P+\cot P$
Solution : Given: $\sqrt{\frac{1+\cos P}{1-\cos P}}$ Multiply the numerator and denominator by $1+\cos P$ $=\sqrt{\frac{(1+\cos P)^2}{(1-\cos P)(1+\cos P)}}$ $=\sqrt{\frac{(1+\cos P)^2}{(1-\cos^2 P)}}$ $=\sqrt{\frac{(1+\cos P)^2}{(\sin^2 P)}}$ $=\frac{(1+\cos P)}{(\sin P)}$ $=\operatorname{cosec}P + \cot P$ Hence, the correct answer is $\operatorname{cosec}P + \cot P$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Question : The given expression is equal to: $1-\frac{\tan ^2 \phi}{\sec ^2 \phi}$
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : The given expression is equal to: $\frac{\left(1+\tan^2 A\right)}{\operatorname{cosec}^2 A \cdot \tan A}$
Question : Simplify the given equation: $\frac{\cot^3A–1}{\cot A–1}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile