Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Option 1: $\frac{1}{3}(x+y+z)$
Option 2: $(x+y+z)$
Option 3: $\frac{1}{4}(x+y+z)$
Option 4: $\frac{1}{2}(x+y+z)$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{2}(x+y+z)$
Solution : By polynomial identity $x^3+y^3+z^3−3xyz = (x+y+z)(x^2+y^2+z^2−xy−yz−zx)$ = $\frac{1}{2}(x+y+z)(2x^2+2y^2+2z^2−2xy−2yz−2zx)$ = $\frac{1}{2}(x+y+z)(x^2−2xy+y^2+y^2−2yz+z^2+z^2−2xz+x^2)$ = $\frac{1}{2}[(x+y+z)(x−y)^2+(y−z)^2+(z−x)^2]$ $\therefore \frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$ = $\frac{\frac{1}{2}[(x+y+z)(x−y)^2+(y−z)^2+(z−x)^2]}{(x-y)^2+(y-z)^2+(z-x)^2}$ = $\frac{1}{2}(x+y+z)$ Hence, the correct answer is $\frac{1}{2}(x+y+z)$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the given expression $\frac{(x^3-y^3)(x+y)}{x^2+x y+y^2}$.
Question : Simplify the given expression and find the value for $x=-1$. $\frac{10 x^2+5 x+2 x y+y}{5 x+y}$
Question : Simplify the given expression $\frac{3\left(\sin ^4 z-\cos ^4 z+1\right)}{\sin ^2 z}$
Question : If $x$ = $y$ = $z$, then $\frac{\left (x+y+z \right )^{2}}{x^{2}+y^{2}+z^{2}}$ is equal to:
Question : If $xy+yz+zx=0$, then $(\frac{1}{x^2–yz}+\frac{1}{y^2–zx}+\frac{1}{z^2–xy})$$(x,y,z \neq 0)$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile