Question : Simplify the given expression and find the value for $x=-1$. $\frac{10 x^2+5 x+2 x y+y}{5 x+y}$
Option 1: –1
Option 2: 0
Option 3: 1
Option 4: 2
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: –1
Solution : Given: $\frac{10 x^2+5 x+2 x y+y}{5 x+y}$ $=\frac{5x(2x+1)+y(2x+1)}{5x+y}$ $=\frac{(5x+y)(2x+1)}{5x+y}$ $=2x+1$ $=2(-1)+1$ [since $x=-1$] $=-1$ Hence, the correct answer is –1.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : Simplify the given expression $\frac{(x^3-y^3)(x+y)}{x^2+x y+y^2}$.
Question : If $X$ is 20% less than $Y$, then find the values of$\frac{Y–X}{Y}$ and $\frac{X}{X–Y}$.
Question : Find the value of the expression $\frac{x^2-1}{x-1}-\frac{x^2-9}{x-3}$.
Question : If $xy+yz+zx=0$, then $(\frac{1}{x^2–yz}+\frac{1}{y^2–zx}+\frac{1}{z^2–xy})$$(x,y,z \neq 0)$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile