Question : Simplify $\frac{1}{2 + 2 p} + \frac{1}{2 + 2 q} + \frac{1}{2 + 2 r}$, where $p = \frac{x}{y + z}$, if $q = \frac{y}{z + x}$ and $r = \frac{z}{x + y}$.
Option 1: $1$
Option 2: $x+y+z$
Option 3: $2$
Option 4: $\frac{1}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : Given: $\frac{1}{2+2 p} + \frac{1}{2+2 q} + \frac{1}{2+2 r}$, where $p = \frac{x}{y+z}$, $q=\frac{y}{z+x}$ and $r=\frac{z}{x+y}$ Substitute the values of p, q, and r in the above expression, and we get, $\frac{1}{2+2\times \frac{x}{y+z}} + \frac{1}{2+2\times \frac{y}{z+x}} + \frac{1}{2+2\times \frac{z}{x+y}}$. Now, the first term can be written as. $\frac{1}{2+2\times \frac{x}{y+z}} = \frac{1}{2+\frac{2x}{y+z}}=\frac{y+z}{2y+2z+2x}$ Similarly, the second term can be written as $\frac{1}{2+2\times \frac{y}{z+x}}=\frac{1}{2+\frac{2y}{z+x}}=\frac{z+x}{2z+2x+2y}$ The third term can be written as $\frac{1}{2+2\times \frac{z}{x+y}} = \frac{1}{2+\frac{2z}{x+y}} = \frac{x+y}{2x+2y+2z}$ So, $\frac{y+z}{2y+2z+2x} + \frac {z+x}{2z+2x+2y} + \frac{x+y}{2x+2y+2z}=\frac{2\times(x+y+z)}{2\times(x+y+z)} = 1$ Hence, the correct answer is $1$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{6(x-y)(y-z)(z-x)}$, where $x \neq y \neq z$, is equal to:
Question : If $\frac{1}{x+\frac{1}{y+\frac{2}{z+\frac{1}{4}}}}=\frac{29}{79}$, where x, y, and z are natural numbers, then the value of $(2 x+3 y-z)$ is:
Question : If $x^3+y^3+z^3=3(1+xyz), P = y +z -x, Q = z+x-y$ and $R = x+y-z$, then what is the value of $P^3 + Q^3+R^3 - 3PQR?$
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $x=(0.25)^\frac{1}{2}$, $y=(0.4)^{2}$, and $z=(0.216)^{\frac{1}{3}}$, then:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile