Question : Solve the following equation. $\sec ^2 \theta\left(\sqrt{1-\sin ^2 \theta}\right)= $ __________.
Option 1: $\tan \theta$
Option 2: $\operatorname{cosec \theta}$
Option 3: $\sec \theta$
Option 4: $1$
Correct Answer: $\sec \theta$
Solution : The given equation is: We know that $\cos^2 \theta = 1-\sin^2 \theta $. $\sec ^2 \theta\left(\sqrt{1-\sin ^2 \theta}\right)$ $=\sec ^2 \theta\left(\sqrt{\cos^2 \theta}\right)$ $=\sec ^2 \theta\cos \theta$ $=\sec \theta $ Hence, the correct answer is $\sec \theta $.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : The value of $\tan ^2 48^{\circ}-\operatorname{cosec}^2 42^{\circ}+\operatorname{cosec}\left(67^{\circ}+\theta\right)-\sec \left(23^{\circ}-\theta\right)$ is:
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : Find the value of $\left(\tan ^2 \theta+\tan ^4 \theta\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile