Question : Solve the following to find its value in terms of trigonometric ratios. $(\sin A + \cos A)(1 - \sin A \cos A)$
Option 1: $\sin^3A+\cos^3A$
Option 2: $\sin^2A-\cos^2A$
Option 3: ${[\cos A-\sin A]\left[\sin ^2 A+\cos ^2 A\right]}$
Option 4: $\sin^3A-\cos^3A$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sin^3A+\cos^3A$
Solution : Given expression, $(\sin A + \cos A)(1 – \sin A \cos A)$ $\sin A+\cos A−\sin^2A\cos A-\sin A\cos^2A$ We know, $\sin^2A=1−\cos^2A$ and $\cos^2A=1−\sin^2A$ Now, $\sin A+\cos A−\sin^2A\cos A−\sin A\cos^2A$ = $\sin A+\cos A−(1−\cos^2A)\cos A−\sin A(1−\sin^2A)$ = $\sin A+\cos A−\cos A+\cos^3A−\sin A+\sin^3A$ = $\sin^3A+\cos^3A$ Hence, the correct answer is $\sin^3A+\cos^3A$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Evaluate the following: $\cos \left(36^{\circ}+A\right) \cdot \cos \left(36^{\circ}-A\right)+\cos \left(54^{\circ}+A\right) \cdot \cos \left(54^{\circ}-A\right)$
Question : Find the value of the following expression. $5\left(\sin ^4 \theta+\cos ^4 \theta\right)+3\left(\sin ^6 \theta+\cos ^6 \theta\right)+19 \sin ^2 \theta \cos ^2 \theta$
Question : Find the value of the following expression. $12\left(\sin^4 \theta+\cos^4 \theta\right)+18\left(\sin^6 \theta+\cos^6 \theta\right)+78 \sin^2 \theta \cos^2 \theta$
Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Question : If A is an acute angle, the simplified form of $\frac{\cos (\pi-A) \cdot \cot \left(\frac{\pi}{2}+A\right) \cos (-A)}{\tan (\pi+A) \tan \left(\frac{3 \pi}{2}+A\right) \sin (2 \pi-A)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile