Question : Suppose $\triangle A B C$ be a right-angled triangle where $\angle A=90^{\circ}$ and $A D \perp B C$. If area $(\triangle A B C)$ $=80 \mathrm{~cm}^2$ and $BC=16$ cm, then the length of $AD$ is:
Option 1: 10 cm
Option 2: 24 cm
Option 3: 18 cm
Option 4: 12 cm
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 10 cm
Solution : Base, BC = 16 cm Area $(\triangle A B C)$ $=80 \mathrm{~cm}^2$ $A D \perp B C$ Area of $(\triangle A B C)$ = $\frac{1}{2}\times BC \times AD$ ⇒ 80 = $\frac{1}{2}\times 16 \times AD$ ⇒ AD = 10 cm Hence, the correct answer is 10 cm.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Suppose $\triangle ABC$ be a right-angled triangle where $\angle A=90°$ and $AD\perp BC$. If the area of $\triangle ABC =40$ cm$^{2}$ and $\triangle ACD =10$ cm$^{2}$ and $\overline{AC}=9$ cm, then the length of $BC$ is:
Question : If $\triangle A B C$ is right angled at $B, A B=12 \mathrm{~cm}$ and $\angle C A B=60^{\circ}$, determine the length of $BC$.
Question : If $\triangle \mathrm{ABC}$ is right angled at $B, A B = 12 \mathrm{~cm},$ and $\angle \mathrm{CAB} = 60^{\circ}$, determine the length of BC.
Question : If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}, \mathrm{BC}=6 \mathrm{~cm}$, and $\angle \mathrm{A}=75^{\circ}$, then which one of the following is true?
Question : If $\triangle ABC \sim \triangle QRP, \frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle Q R P)}=\frac{9}{4}, A B=18 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}$, then the length of $\mathrm{PR}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile