Question : The angle of elevation of an aeroplane from a point on the ground is 45°. After flying for 15 seconds, the elevation changes to 30°. If the aeroplane is flying at a height of 2500 metres, then the speed of the aeroplane in km/h is:

Option 1: $600$

Option 2: $600(\sqrt{3}+1)$

Option 3: $600\sqrt{3}$

Option 4: $600(\sqrt{3}–1)$


Team Careers360 19th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: $600(\sqrt{3}–1)$


Solution : Let the vertical height be $h$ and horizontal distance be $B_{1}$ when the elevation is 45° and $B_{2}$ when the elevation is 30°.

Using trigonometry ratio, when elevation is 45°.
$\tan\theta =\frac{\text{Height}}{\text{Distance}}$
⇒ $\tan45° = \frac{h}{B_{1}}$
⇒ $1 = \frac{h}{B_{1}}$
⇒ $B_{1} = h$
Using trigonometry ratio, when elevation is 30°.
$\tan30° = \frac{h}{B_{2}}$
⇒ $\frac{1}{\sqrt{3}} = \frac{h}{B_{2}}$
⇒ $B_{2} = \sqrt{3}h$
The speed of the aeroplane = $\frac{B_{2}–B_{1}}{\text{time}}$
Also, time is given as 15 sec and height is 2500 metres.
So, speed = $ \frac{B_{2}–B_{1}}{\text{time}} = \frac{\sqrt{3}h–h}{\frac{15}{60×60}}$ $\frac{(\sqrt{3}–1)h}{\frac{15}{60×60}} = \frac{(\sqrt{3}–1)\frac{2500}{1000}}{\frac{15}{60×60}}$ $=600(\sqrt{3}–1)$ km/h
Hence, the correct answer is $600(\sqrt{3}–1)$ km/h.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books