Question : The angles of elevation of an aeroplane flying vertically above the ground, as observed from the two consecutive stones,1 km apart, are 45° and 60°. The height of the aeroplane above the ground in km is:

Option 1: $(\sqrt{3}+1)$

Option 2: $(\sqrt{3}+3)$

Option 3: $\frac{1}{2}(\sqrt{3}+1)$

Option 4: $\frac{1}{2}(\sqrt{3}+3)$


Team Careers360 11th Jan, 2024
Answer (1)
Team Careers360 12th Jan, 2024

Correct Answer: $\frac{1}{2}(\sqrt{3}+3)$


Solution :
Let A be the position of the aeroplane and B and C be the two milestones.
So, BC = 1 km
$\angle \text{ABD} =$ 45° and $\angle \text{ACD} =$ 60°
Let AD = $h$ km and CD = $x$ km
Now, $\tan 45° = \frac{h}{x+1}$
⇒ $1 =​ \frac{h}{x+1}$
⇒ $x = h-1$
Also, $\tan 60° = \frac{h}{x}$
​⇒ $\sqrt{3}​ = \frac{h}{x}$
⇒ $x = \frac{h}{\sqrt{3}}$
So, $\frac{h}{\sqrt{3}} = h-1$
⇒ $h = \frac{\sqrt{3}}{\sqrt{3}-1}$
Rationalising by ($\sqrt{3}+1$) we get,
⇒ $h = \frac{1}{2}(3+\sqrt{3})$ km
Hence, the correct answer is $\frac{1}{2}(\sqrt{3}+3)$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books