23 Views

Question : The area of the sector of a circle of radius 12 cm is $32 \pi \;\mathrm{cm}^2$. Find the length of the corresponding arc of the sector.

Option 1: $\frac{16}{3} \pi$ cm

Option 2: $\frac{13}{3} \pi$ cm

Option 3: $\frac{10}{3} \pi$ cm

Option 4: $\frac{8}{3} \pi$ cm


Team Careers360 14th Jan, 2024
Answer (1)
Team Careers360 19th Jan, 2024

Correct Answer: $\frac{16}{3} \pi$ cm


Solution : Given:
The radius of the circle is 12 cm.
The area of the sector of a circle is $32\pi$ cm 2 .
Area of the sector = $\pi r^2× \frac{\theta}{360^{\circ}}$
⇒ $32\pi=\pi ×12^2×\frac{\theta}{360^{\circ}}$
⇒ $\frac{\theta}{360}=\frac{32}{144}$
⇒ $\frac{\theta}{360}=\frac{2}{9}$
Length of the arc = $2\pi r×\frac{\theta}{360^{\circ}}$
= $2\pi×12×\frac{2}{9}=\frac{16}{3} \pi$ cm
So, the length of the arc is $\frac{16}{3} \pi$ cm.
Hence, the correct answer is $\frac{16}{3} \pi$ cm.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books