281 Views

Question : The cube of the difference between two given natural numbers is 1728, while the product of these two given numbers is 108. Find the sum of the cubes of these two given numbers.

Option 1: 6048

Option 2: 5616

Option 3: 6024

Option 4: 5832


Team Careers360 20th Jan, 2024
Answer (1)
Team Careers360 23rd Jan, 2024

Correct Answer: 6048


Solution : Let the two numbers be $a$ and $b$.
$(a–b)^3=1728$ and $ab=108$.
⇒ $(a–b)=\sqrt[3]{1728}$
⇒ $(a–b)=12$ -------------------------------(equation 1)
Now, $(a+b)^2=(a–b)^2+4ab$
⇒ $(a+b)^2=(12)^2+4(108)$
⇒ $(a+b)=\sqrt{144+432}$
⇒ $(a+b)=24$ ---------------------------(equation 2)
Performing equation (2) – equation (1), we get:
$(a+b)-(a-b) = 24-12$
⇒ $2b = 12$
⇒ $b=6$
Substituting it in equation 1, we get:
$a-6= 12$
⇒ $a=18$
Therefore, $a^3+b^3=18^3+6^3=5832+216=6048$.
Hence, the correct answer is 6048.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books