3 Views

Question : The difference between the semi-perimeter and the sides of ΔPQR are 18 cm, 17 cm, and 25 cm, respectively. Find the area of the triangle.

Option 1: $330\sqrt{510}$ cm2

Option 2: $230\sqrt{510}$ cm2

Option 3: $30\sqrt{510}$ cm2

Option 4: $130\sqrt{510}$ cm2


Team Careers360 23rd Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $30\sqrt{510}$ cm 2


Solution : Let the semi-perimeter be $s$ and the sides of a triangle are $a,b,$ and $c$.
Given,
$s - a = 18$------- (1)
$s - b = 17$--------(2)
$s - c = 25$--------(3)
⇒ $a = s - 18$
⇒ $b = s - 17$
⇒ $c = s - 25$
Now, $s = \frac{a + b+c}{2}$ = $\frac{s−18+s−17+s−25}{2}=\frac{3s−60}{2}= 60$ units
Now with the help of Heron's formula,
Area of Triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
⇒ Area of triangle = $\sqrt{60×18×17×25}$
⇒ Area of triangle = $\sqrt{459000}$
$\therefore$ Area of triangle = $30\sqrt{510}$ cm$^2$
Hence, the correct answer is $30\sqrt{510}$ cm 2 .

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books