3 Views

Question : The distance between the centres of two circles of radii 2 cm and 6 cm is 5 cm. Find the length of the direct common tangent.

Option 1: $6 \mathrm{~cm}$

Option 2: $3 \mathrm{~cm}$

Option 3: $9 \mathrm{~cm}$

Option 4: $\frac{5}{2} \mathrm{~cm}$


Team Careers360 14th Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: $3 \mathrm{~cm}$


Solution : Given: The distance between the centres of two circles of radii 2 cm and 6 cm is 5 cm
The length of the direct common tangent between two circles $ = \sqrt{d^2 - (r_1 - r_2)^2}$ where $d$ is the distance between the centres of the two circles and $r_1$ and $r_2$ are the radii of the two circles.
The length of the direct common tangent between two circles $= \sqrt{(5)^2 - (2 - 6)^2} = \sqrt{25 - 16} = \sqrt{9} = 3 \mathrm{~cm}$
Hence, the correct answer is $3 \mathrm{~cm}$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books