Question : The equation $\cos ^{2}\theta=\frac{(x+y)^{2}}{4xy}$ is only possible when,
Option 1: $x=-y$
Option 2: $x>y$
Option 3: $x=y$
Option 4: $x<y$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $x=y$
Solution : $\cos ^{2}\theta=\frac{(x+y)^{2}}{4xy}$ We know that $(x+y)\geq 2\sqrt{xy}$ (Since the arithmetic mean is always greater than or equal to the geometric mean) $⇒(x+y)^2\geq 4xy$ $⇒\frac{(x+y)^2}{4xy}\geq 1$ Since $0\leq \cos ^{2}\theta\leq 1$, solution exists when $\frac{(x+y)^2}{4xy}=1$ $\therefore \frac{(x+y)^2}{4xy}=1$ $⇒4xy =x^2+y^2 + 2xy$ $⇒x^2+y^2 - 2xy=0$ $⇒(x-y)^2 = 0$ $⇒x-y=0$ $\therefore x=y$ Hence, the correct answer is $x=y$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x\cos \theta -y\sin \theta =\sqrt{x^{2}+y^{2}}$ and $\frac{\cos ^2{\theta }}{a^{2}}+\frac{\sin ^{2}\theta}{b^{2}}=\frac{1}{x^{2}+y^{2}},$ then the correct relation is:
Question : If $x=a\left ( \sin\theta+\cos\theta \right )$ and $y=b\left ( \sin\theta-\cos\theta \right )$, then the value of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ is:
Question : If $\sin (x - y) = \frac{1}2$ and $\cos (x + y) = \frac{1}2$, then what is the value of $\sin x \cos x + 2\sin^2x + cos^3x \sec x$?
Question : If $x=\operatorname{cosec \theta}-\sin\theta$ and $y=\sec\theta-\cos\theta$, then the relation between $x$ and $y$ is:
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile