Question : The given expression is equal to $\frac{\sin^4 A+\cos^4 A}{1-2 \sin^2 A \cos^2 A}$:
Option 1: 1
Option 2: –1
Option 3: 0
Option 4: 2
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : $\frac{\sin^4 A+\cos^4 A}{1-2 \sin^2 A \cos^2 A}$ Since $\sin^2A+\cos^2 A=1$ and $(\sin^2A+\cos^2 A)^2=1$, $=\frac{\sin^4 A+\cos^4 A}{(\sin^2A+\cos^2 A)^2 -2 \sin^2 A \cos^2 A}$ $= \frac{\sin^4 A+\cos^4 A}{\sin^4A+\cos^4 A -2 \sin^2 A \cos^2 A +2 \sin^2 A \cos^2 A}$ $=\frac{\sin^4 A+\cos^4 A}{\sin^4A+\cos^4 A }$ $=1$ Hence, the correct answer is 1.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the expression: $\frac{3-\operatorname{\sin}^2 A+\operatorname{\cos}^2 A}{2+2 \operatorname{\cos}^2 A}$
Question : Simplify the given expression: $\frac{\sin^2 32^{\circ}+\sin^2 58^{\circ}}{\cos^2 32^{\circ}+\cos^2 58^{\circ}}+\sin^2 53^{\circ}+\cos 53^{\circ} \sin 37^{\circ}$
Question : Simplify the following expression: $\frac{1-\sin A}{\cos A}+\frac{\cos A}{1-\sin A}$
Question : If $\sin A+\sin ^2 A=1$, then the value of the expression $\left(\cos ^2 A+\cos ^4 A\right)$ is
Question : If $\tan\theta =\frac{3}{4}$, then the value of $\frac{4\sin^{2}\theta–2\cos^{2}\theta}{4\sin^{2}\theta+3\cos^{2}\theta}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile