Question : The given expression is equal to: $\frac{\left(1+\tan^2 A\right)}{\operatorname{cosec}^2 A \cdot \tan A}$
Option 1: $\sec^2A$
Option 2: $\sec A$
Option 3: $\tan A$
Option 4: $\tan^2A$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\tan A$
Solution : Given: $\frac{\left(1+\tan ^2 A\right)}{\operatorname{cosec}^2 A \cdot \tan A}$ $=\frac{\left(\sec^2 A\right)}{\operatorname{\frac{1}{\sin^2A}} \cdot \frac{\sin A}{\cos A}}$ $=\frac{\left(\frac{1}{\cos^2 A}\right)}{\operatorname{\frac{1}{\sin A \cdot \cos A }}}$ $=\frac{\sin A \cdot \cos A }{\cos^2 A}$ $=\frac{\sin A}{\cos A}$ $=\tan A$ Hence, the correct answer is $\tan A$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the given expression. $\sqrt{\frac{1+\cos P}{1-\cos P}}$
Question : What is the value of $\frac{1+\tan A}{\operatorname{cosec} A}+\frac{1+\cot A}{\sec A}$?
Question : The value of the expression
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile