6 Views

Question : The graph of $3x+4y-24=0$ forms a $\triangle OAB$ with the coordinate axes, where $O$ is the origin. Also, the graph of $x+y+4=0$ forms a $\triangle OCD$ with the coordinate axes. Then the area of $\triangle OCD$ is equal to:

Option 1: $\frac{1}{2}\text{ of the area of}\ \triangle OAB$

Option 2: $\frac{1}{3}\text{ of the area of}\ \triangle OAB$

Option 3: $\frac{2}{3}\text{ of the area of}\ \triangle OAB$

Option 4: $\text{ the area of}\ \triangle OAB$


Team Careers360 4th Jan, 2024
Answer (1)
Team Careers360 15th Jan, 2024

Correct Answer: $\frac{1}{3}\text{ of the area of}\ \triangle OAB$


Solution :
Given: The graph of $3x+4y-24=0$ forms a $\triangle OAB$ with the coordinate axes, where $O$ is the origin. Also, the graph of $x+y+4=0$ forms a $\triangle OCD$ with the coordinate axes.
By substituting the value of $x=0$ in the equation $3x + 4y= 24$, we get,
$3\times0+ 4y= 24$
⇒ $4y=24$
⇒ $y = 6$
Therefore, B's coordinates are $(0, 6)$.
By substituting the value of $y=0$ in the equation $3x + 4y = 24$, we get,
$3x + 4\times 0 = 24$
⇒ $3x=24$
⇒ $x = 8$
Therefore, A's coordinates are $(8,0)$.
By substituting the value of $y=0$ in the equation $x + y = –4$, we get,
$x + 0 = –4$
⇒ $x=–4$
Therefore, C's coordinates are $(–4,0 )$.
By substituting the value of $x=0$ in the equation $x + y = –4$, we get,
$0 + y = –4$
⇒ $y=–4$
Therefore, D's coordinates are $(0,–4)$.
Also, the area of $\triangle OAB=\frac{1}{2}\times OA \times OB$.
⇒ $\frac{1}{2}\times 8 \times 6=24$ sq. units
Similarly, the area of $\triangle OCD=\frac{1}{2}\times OC \times OD$.
⇒ $\frac{1}{2}\times 4 \times 4=8$ sq. units
So, $ \text{ area of}\ \triangle OCD=\frac{1}{3} $ of the area of $\triangle OAB$
Hence, the correct answer is $\frac{1}{3}\text{ of the area of}\ \triangle OAB$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books