Question : The greatest among the following numbers $(3)^{\frac{1}{3}}, (2)^{\frac{1}{2}}, 1, (6)^{\frac{1}{6}}$ is:
Option 1: $(2)^{\frac{1}{2}}$
Option 2: 1
Option 3: $(6)^{\frac{1}{6}}$
Option 4: $(3)^{\frac{1}{3}}$
Correct Answer: $(3)^{\frac{1}{3}}$
Solution : To find the greatest number, we have to find the LCM of the denominators of the power. Given numbers are = $(3)^{\frac{1}{3}},(2)^{\frac{1}{2}}, 1, (6)^{\frac{1}{6}}$ The LCM of 3, 2, 1 and 6 = 6 Raised the power 6 to each of the numbers. $⇒ [(3)^{\frac{1}{3}}]^6 = (3)^{2} = 9$ $⇒ [(2)^{\frac{1}{2}}]^6 = (2)^{3} = 8$ $⇒ (1)^{6} = 1$ $⇒ [(6)^{\frac{1}{6}}]^6 = (6)^{1} = 6$ So, $(3)^{\frac{1}{3}}$ is the greatest number. Hence, the correct answer is $(3)^{\frac{1}{3}}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The greatest fraction among $\frac{2}{3}, \frac{5}{6}, \frac{11}{15} \text{ and } \frac{7}{8} \text{ is:}$
Question : What is the average of the first six prime numbers?
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Question : The value of $\frac{\frac{5}{2}-\frac{3}{7} \times 1 \frac{4}{5} \div 3 \frac{6}{7}}{\frac{3}{2}+1 \frac{2}{5} \div 3 \frac{1}{2} \times 1 \frac{1}{4}}$ is:
Question : Directions: Which of the following numbers will replace the question mark (?) in the given series? $18,6,2, ?, \frac{2}{9}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile