Question : The HCF of $\frac{3}{4}, \frac{7}{8}$, and $\frac{13}{14}$ is:
Option 1: $\frac{1}{36}$
Option 2: $\frac{1}{56}$
Option 3: $\frac{1}{70}$
Option 4: $\frac{1}{60}$
Correct Answer: $\frac{1}{56}$
Solution : The highest common factor (HCF) of fractions is calculated as the HCF of the numerators divided by the least common multiple (LCM) of the denominators. HCF of the numerators (3, 7, 13) is 1. LCM of the denominators (4, 8, 14) is 56. So, HCF of $\frac{3}{4}, \frac{7}{8}$, and $\frac{13}{14}$ = $\frac{1}{56}$ Hence, the correct answer is $\frac{1}{56}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Question : The value of $\frac{1 \frac{1}{2} \div 3 \frac{1}{4}+\frac{1}{2} \div \frac{13}{14}+\frac{1}{5}}{\frac{1}{5} \times 3 \frac{1}{2}-\frac{1}{3} \div 1 \frac{3}{4} \times 3 \frac{1}{2}}$ is:
Question : The value of $8-3 \div 6$ of $2+\left(4 \div 4\right.$ of $\left.\frac{1}{4}\right) \div 8+\left(4 \times 8 \div \frac{1}{4}\right) \times \frac{1}{8}$ is:
Question : What is the HCF of $\frac{4}{5}, \frac{6}{8}, \frac{8}{25}?$
Question : The value of $1-3 \div 6$ of $2+\left(4 \div 4\right.$ of $\left.\frac{1}{4}\right) \div 8+\left(4 \times 8 \div \frac{1}{4}\right) \times \frac{1}{8}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile