Question : The internal bisectors of the angles B and C of a triangle ABC meet at I. If $\angle$BIC = $\frac{\angle A}{2}$ + X, then X is equal to:
Option 1: $60^{\circ}$
Option 2: $30^{\circ}$
Option 3: $90^{\circ}$
Option 4: $45^{\circ}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: $90^{\circ}$
Solution :
$\angle$BIC = $\frac{\angle A}{2}$ + X
In $\triangle$ABC,
⇒ $\angle$A + $\angle$B + $\angle$C = $180^{\circ}$
⇒ $\angle$B + $\angle$C = $180^{\circ}$ – $\angle$A
⇒ $\frac{1}{2}$($\angle$B + $\angle$C) = $90^{\circ}$ – $\frac{\angle A}{2}$
In $\triangle$BIC,
⇒ $\frac{\angle B}{2}$ + $\frac{\angle C}{2}$ + $\angle$BIC = $180^{\circ}$
⇒ $90^{\circ}$ – $\frac{\angle A}{2}$ + $\angle$BIC = $180^{\circ}$
⇒ $\angle$BIC = $180^{\circ}$ – $90^{\circ}$ + $\frac{\angle A}{2}$ = $90^{\circ}$ + $\frac{\angle A}{2} = \frac{\angle A}{2}$ + X
⇒ X = $90^{\circ}$
Hence, the correct answer is $90^{\circ}$.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.