Question : The internal bisectors of the angles B and C of a triangle ABC meet at I. If $\angle$BIC = $\frac{\angle A}{2}$ + X, then X is equal to:
Option 1: $60^{\circ}$
Option 2: $30^{\circ}$
Option 3: $90^{\circ}$
Option 4: $45^{\circ}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $90^{\circ}$
Solution : $\angle$BIC = $\frac{\angle A}{2}$ + X In $\triangle$ABC, ⇒ $\angle$A + $\angle$B + $\angle$C = $180^{\circ}$ ⇒ $\angle$B + $\angle$C = $180^{\circ}$ – $\angle$A ⇒ $\frac{1}{2}$($\angle$B + $\angle$C) = $90^{\circ}$ – $\frac{\angle A}{2}$ In $\triangle$BIC, ⇒ $\frac{\angle B}{2}$ + $\frac{\angle C}{2}$ + $\angle$BIC = $180^{\circ}$ ⇒ $90^{\circ}$ – $\frac{\angle A}{2}$ + $\angle$BIC = $180^{\circ}$ ⇒ $\angle$BIC = $180^{\circ}$ – $90^{\circ}$ + $\frac{\angle A}{2}$ = $90^{\circ}$ + $\frac{\angle A}{2} = \frac{\angle A}{2}$ + X ⇒ X = $90^{\circ}$ Hence, the correct answer is $90^{\circ}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : In $\triangle A B C$ the internal bisectors of $\angle ABC$ and $\angle ACB$ meet at $X$ and $\angle BAC=30^{\circ}$. The measure of $\angle BXC $ is:
Question : In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, then the value of $\angle B$ is:
Question : In $\triangle ABC$, the internal bisectors of $\angle B$ and $\angle C$ meet at point $O$. If $\angle A = 80^\circ$, then $\angle BOC$ is equal to:
Question : In an isosceles triangle, if the unequal angle is five times the sum of the equal angles, then each equal angle is:
Question : Three angles of a triangle are $(x-15^{\circ}),(x+45^{\circ}),$ and $(x+60^{\circ})$. Identify the type of triangle.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile