Question : The LCM of $\frac{1}{3}, \frac{3}{5}, \frac{4}{7}$ and $\frac{9}{16}$ is:
Option 1: 36
Option 2: 49
Option 3: 38
Option 4: 81
Correct Answer: 36
Solution : Given: $\frac{1}{3}, \frac{3}{5}, \frac{4}{7}$ and $\frac{9}{16}$ We know that, LCM of a fraction = $\frac{\text{LCM of the numerators}}{\text{HCF of the denominator}}$ LCM of 1, 3, 4 and 9 is 36 HCF of 3, 5, 7 and 16 is 1 LCM of a fraction = $\frac{36}{1}$ = 36 Hence, the correct answer is 36.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Find the LCM of $\frac{3}{2}, \frac{81}{16}$ and $\frac{9}{8}$
Question : The value of $\left(5 \frac{1}{4} \div \frac{3}{7}\right.$ of $\left.\frac{1}{2}\right) \div\left(5 \frac{1}{9}-7 \frac{7}{8} \div 9 \frac{9}{20}\right) \times \frac{11}{21}+\left(2 \div 2\right.$ of $\left.\frac{1}{2}\right)$ is:
Question : The value of $6 \frac{8}{15}÷\frac{7}{9}$ of $\left(1 \frac{1}{10}+5 \frac{1}{5}\right)+\frac{2}{5}÷7 \frac{1}{5}$ is:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}+\frac{3}{4} \div \frac{1}{2}$ is:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}-\frac{3}{4}+\frac{3}{4} \div \frac{1}{2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile