Question : The LCM of $x^2-8x + 15$ and $x^2-5x + 6$ is:
Option 1: $(x-2)(x-3)^2(x-5)$
Option 2: $(x + 5) (x + 2) (x + 3)$
Option 3: $(x + 5) (x - 2) (x - 3)$
Option 4: $(x - 5) (x - 2) (x - 3)$
Correct Answer: $(x - 5) (x - 2) (x - 3)$
Solution : Given: The equations are $x^2- 8x + 15$ and $x^2- 5x + 6$. LCM is the product of every prime factor that is present in the numbers to the greatest power. The factors of $x^2-8x+15$ is given as, $=x^2-3x-5x+15$ $=(x-3)-5(x-3)$ $=(x-3)(x-5)$ The factors of $x^2-5x+6$ is given as, $=x^2-3x-2x+6$ $=(x-3)-2(x-3)$ $=(x-3)(x-2)$ LCM of $(x^2- 8x + 15$, $x^2- 5x + 6)=(x-5)(x-2)(x-3)$ Hence, the correct answer is $(x-5)(x-2)(x-3)$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the value of $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$?
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Question : If $x^2-2\sqrt{10}x+1=0$, what is the value of $(x-\frac{1}{x})$?
Question : If $x^2-8x+1=0$, what is the value of $(x^2+\frac{1}{x^2})$?
Question : If $\frac{x^{2}-x+1}{x^{2}+x+1}=\frac{2}{3}$, then the value of $\left (x+\frac{1}{x} \right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile