Question : The least number among $\frac{4}{9}, \sqrt{\frac{9}{49}}, 0.45$ and $(0.8)^{2}$:
Option 1: $\frac{4}{9}$
Option 2: $\sqrt{\frac{9}{49}}$
Option 3: $0.45$
Option 4: $(0.8)^{2}$
Correct Answer: $\sqrt{\frac{9}{49}}$
Solution : Decimal value of given numbers: $ ⇒ \frac{4}{9} = 0.44$ $ ⇒ \sqrt{\frac{9}{49}} = \frac{3}{7} = 0.43$ $ ⇒ 0.45$ $ ⇒ (0.8)^{2} = 0.64$ By comparing these values, we get: The least number = $\sqrt{\frac{9}{49}}$ Hence, the correct answer is $\sqrt{\frac{9}{49}}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}+\frac{3}{4} \div \frac{1}{2}$ is:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}-\frac{3}{4}+\frac{3}{4} \div \frac{1}{2}$ is:
Question : $\frac{{\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}}}{\sqrt[3]{8}}=?$
Question : If $\sin A=\frac{1}{2}$, then the value of $(\tan A+\cos A)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile