3 Views

Question : The length of a side of an equilateral triangle is 8 cm. The area of the region lying between the circumcircle and the incircle of the triangle is __________ ( Use: $\pi = \frac{22}{7}$)

Option 1: $50\frac{1}{7}\ \text{cm}^2$

Option 2: $50\frac{2}{7}\ \text{cm}^2$

Option 3: $75\frac{1}{7}\ \text{cm}^2$

Option 4: $75\frac{2}{7}\ \text{cm}^2$


Team Careers360 3rd Jan, 2024
Answer (1)
Team Careers360 17th Jan, 2024

Correct Answer: $50\frac{2}{7}\ \text{cm}^2$


Solution :
Given:
Side of the equilateral triangle, $a$ = 8 cm
Radius of incircle = $\frac{a}{2\sqrt{3}}$ cm
Radius of circumcircle = $\frac{a}{\sqrt{3}}$ cm
So, the required area
= Area of circumcircle – Area of incircle
= $\pi (\frac{a}{\sqrt{3}})^2-\pi (\frac{a}{2\sqrt{3}})^2$
= $\pi (\frac{8}{\sqrt{3}})^2-\pi (\frac{8}{2\sqrt{3}})^2$
= $64\pi(\frac{1}{3}-\frac{1}{12})$
= $64×\frac{22}{7}×\frac{1}{4}$
= $\frac{352}{7}$
= $50\frac{2}{7}\ \text{cm}^2$
Hence, the required area is $50\frac{2}{7}\ \text{cm}^2$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books