Question : The mean of $x$ and $\frac{1}{x}$ is $N$. Then the mean of $x^2$ and $\frac{1}{x^2}$ is:
Option 1: $N^2$
Option 2: $2N^2-1$
Option 3: $N^2-2$
Option 4: $4N^2-2$
Correct Answer: $2N^2-1$
Solution : Mean of $x$ and $\frac{1}{x}$ is $N$. So, $\frac{x+\frac{1}{x}}{2}$ = $N$ Squaring both sides, ⇒ $\frac{(x+\frac{1}{x})^2}{2^2}$ = $N^2$ ⇒ $\frac{x^2+\frac{1}{x^2}+2×x×\frac{1}{x}}{4}$ = $N^2$ ⇒ $x^2+\frac{1}{x^2}$ = $4N^2-2$ So, the mean of $x^2$ and $\frac{1}{x^2}$ = $\frac{x^2+\frac{1}{x^2}}{2}$ = $2N^2-1$ Hence, the correct answer is $2N^2-1$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{x^{2}-x+1}{x^{2}+x+1}=\frac{2}{3}$, then the value of $\left (x+\frac{1}{x} \right)$ is:
Question : Find the value of $\frac{(243)^{\frac{n}{5}}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$.
Question : What is the value of $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$?
Question : The value of $\frac{(243)^\frac{n}{5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$ is:
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$; then what is the value of $x+\frac{1}{x}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile