Question : The minimum value of $2\sin^{2}\theta+3\cos^{2}\theta$ is:
Option 1: 0
Option 2: 3
Option 3: 2
Option 4: 1
Correct Answer: 2
Solution : Given: $2\sin^{2}\theta+3\cos^{2}\theta$ = $2\sin^{2}\theta+3(1-\sin^{2}\theta)$ = $2\sin^{2}\theta+3-3\sin^{2}\theta)$ = $3-\sin^{2}\theta$ For minimum value of $(3-\sin^{2}\theta)$ by putting $\sin^{2}\theta=1$ ⇒ $3-1=2$ Hence, the correct answer is 2.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : If $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$, where $\theta$ is an acute angle, then the value of $\tan\theta$ is:
Question : If $1 + \sin^2 θ - 3\sinθ \cosθ = 0$, then the value of $\cotθ$ is:
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Question : If $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\sec \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile