18 Views

Question : The number of students in section A and section B of a class are 40 and 52, respectively. The average score in mathematics of all the students is 75. If the average score of the students in A is 20 % more than that of students in B then what is the average score of students in B?

Option 1: 71

Option 2: 65

Option 3: 69

Option 4: 63


Team Careers360 12th Jan, 2024
Answer (1)
Team Careers360 13th Jan, 2024

Correct Answer: 69


Solution : Total number of students = 40 + 52 = 92
⇒ $75 = \frac{\text{(Sum of scores of all students)}}{92}$
⇒ Total score in mathematics = 75 × 92 = 6900
Now,
Let the average score of section B students be $x$
⇒ Average score of section A student = $x + \frac{20}{100} × x$
= $\frac{6x}{5}$
Now,
⇒ $x = \frac{\text{Sum of score of mathematics in section B}}{52}$
The sum of scores of section B in mathematics = $52x$
Now,
⇒ $\frac{6x}{5} = \frac{\text{Sum of score of mathematics in section A}}{40}$
Sum of score of mathematics in section A = $\frac{6x}{5} × 40=48x$
Now,
Total score = Sum of the scores of mathematics in section A + Sum of the scores of section B in mathematics
⇒ $6900 = 48x + 52x$
⇒ $100x = 6900$
⇒ $x = 69$
Hence, the correct answer is 69.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books