8 Views

Question : The perimeter of a rectangle is 68 cm. If the area of the rectangle is 240 cm2, then what is the length of each of its diagonals?

Option 1: 25 cm

Option 2: 27 cm

Option 3: 26 cm

Option 4: 28 cm


Team Careers360 5th Jan, 2024
Answer (1)
Team Careers360 11th Jan, 2024

Correct Answer: 26 cm


Solution : Given,
Perimeter of a rectangle = 68 cm
Area of the rectangle = 240 cm 2
Let the length be l and breadth be b.
Perimeter of Rectangle = 2(l + b)
⇒ 2(l + b) = 68
⇒ l + b = 34............(1)
Also, Area of rectangle = l × b
⇒ l × b = 240.............(2)
From (1), we get l = 34 – b,
⇒ (34 – b) × b = 240
⇒ b 2 – 34b + 240 = 0
⇒ b 2 – 10b – 24b + 240 = 0
⇒ b(b – 10) – 24(b – 10) = 0
⇒ (b – 24)(b – 10) = 0
⇒ b = 10 or 24
$\therefore$ Length, l = 24 or 10 cm
We know, Pythagoras's theorem: Perpendicular 2 = Length 2 + Breadth 2
⇒ Length of diagonal = $\sqrt{24^2+10^2}=\sqrt{576+100}=\sqrt{676}= 26\ \text{cm}$
Hence, the correct answer is 26 cm.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books