2 Views

Question : The radius of a circle is increased by 10%. The percentage increase in its area is:

Option 1: 10%

Option 2: 11%

Option 3: 20%

Option 4: 21%


Team Careers360 17th Jan, 2024
Answer (1)
Team Careers360 21st Jan, 2024

Correct Answer: 21%


Solution : Given: The radius of a circle is increased by 10%.
Let the radius be r units, then area = $\pi r^2$ sq. units
After a 10% increase, new radius = $(r+r×\frac{10}{100})=\frac{11r}{10}$ units
Now, the area = $\pi (\frac{11r}{10})^2=\frac{121\pi r^2}{100}$ sq. units
Therefore, the percentage increase in area is,
= $\frac{(\frac{121\pi r^2}{100}-\pi r^2)}{\pi r^2}×100$
= $(\frac{21\pi r^2}{100})×100$
= 21%
Hence, the correct answer is 21%.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books