Question : The ratio of acid and water in the three samples is 2 : 1, 3 : 2, and 5 : 3. A mixture containing equal quantities of all three samples is made. The ratio of acid and water in the mixture is:
Option 1: 120 : 133
Option 2: 227 : 133
Option 3: 227 : 120
Option 4: 133 : 227
Correct Answer: 227 : 133
Solution : Given: The ratio of acid and water in three samples is 2 : 1, 3 : 2, and 5 : 3. Proportion of acid in 3 samples are $\frac{2}{3},\frac{3}{5},$ and $\frac{5}{8}$. Total proportion of acid = $\frac{2}{3}+\frac{3}{5}+\frac{5}{8}$ = $\frac{80+72+75}{120}$ = $\frac{227}{120}$ Proportion of water in 3 samples are $\frac{1}{3},\frac{2}{5},$ and $\frac{3}{8}$. Total proportion of water = $\frac{1}{3}+\frac{2}{5}+\frac{3}{8}=\frac{40+48+45}{120}=\frac{133}{120}$ So, the required ratio = $\frac{\frac{227}{120}}{\frac{133}{120}}$ = 227 : 133. Hence, the correct answer is 227 : 133.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In a mixture of 25 litres, the ratio of acid to water is 4 : 1. Another 3 litres of water is added. The ratio of acid to water in the new mixture is:
Question : Three containers whose volumes are in the ratio of 2 : 3 : 4 are full of a mixture of spirit and water. In the 1st container, the ratio of spirit and water is 4 : 1, in the second container the ratio is 11 : 4 and in the 3rd container the ratio is 7 : 3. All three mixtures are
Question : If the sum of two quantities is equal to three times their difference, then the ratio of the two quantities is:
Question : Two mixtures A and B have the following compositions: Mixture A has copper and tin in a ratio of 1 : 2 Mixture B has copper and tin in a ratio of 1 : 3 If equal quantities of mixtures A and B are used for producing mixture C, then find the ratio of copper and
Question : Three vessels whose capacities are 3 : 2 : 1 are filled with milk mixed with water. The ratio of milk and water in the mixture of vessels is 5 : 2, 4 : 1, and 4 : 1, respectively. Taking $\frac{1}{3}$ of first, $\frac{1}{2}$ of second, and $\frac{1}{7}$ of third mixtures,
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile