17 Views

Question : The ratio of the radius of the base and the height of a solid right circular cylinder is 2 : 3. If its volume is 202.125 cm3, then its total surface area is: (Take $\pi=\frac{22}{7}$)

Option 1: 192.5 cm2

Option 2: 154 cm2

Option 3: 168 cm2

Option 4: 115.5 cm2


Team Careers360 17th Jan, 2024
Answer (1)
Team Careers360 20th Jan, 2024

Correct Answer: 192.5 cm 2


Solution : Given: The ratio of the radius of the base and the height of a solid right circular cylinder is 2 : 3.
Let the radius and height be  $2x$ and $3x$ respectively.
The volume is 202.125 cm 3 .
The total surface area of the cylinder = $2\pi r(r+h)$,
The volume of the cylinder = $\pi r^2h$, where $r$ and $h$ are the radius and height respectively.
⇒ $\frac{22}{7}\times (2x)^2\times 3x=202.125$
⇒ $x^3=\frac{202.125\times 7}{22\times 2\times 2\times 3}$
⇒ $x^3=\frac{0.125\times 49\times 7}{ 2\times 2\times 2}$
⇒ $x=\frac{0.5\times 7}{ 2}=1.75$
The radius of the cylinder $=2x=2\times 1.75 = 3.5$ cm
The height of the cylinder $=3x=3\times 1.75 = 5.25$ cm
The total surface area of the cylinder $=2\times\frac{22}{7}\times 3.5\times (3.5+5.25)$
$=2\times\frac{22}{7}\times 3.5 \times 8.75=192.5$ cm 2
Hence, the correct answer is 192.5 cm 2 .

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books