18 Views

Question : The ratio of the sides of a triangle is 11 : 11 : 4. If the area of the triangle is $2\sqrt{117}$ cm, then what is the length of the equal sides?

Option 1: 3 cm

Option 2: 13 cm

Option 3: 11 cm

Option 4: 9 cm


Team Careers360 18th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: 11 cm


Solution :
Given: The ratio of the sides of a triangle is 11 : 11 : 4.
The area of the triangle is $2\sqrt{117}$ cm 2 .
A perpendicular bisector in an isosceles triangle bisects the base and acts as the height of the triangle.
Let the sides be $11x,11x,$ and $4x$
Then, the height AD = $\sqrt{(11x)^2-(2x)^2}=\sqrt{117x^2}$
Area of a triangle = $\frac{1}{2}$ × Base × Height
⇒ $\frac{1}{2}×4x×\sqrt{117x^2}=2\sqrt{117}$
⇒ $x^2=1$
⇒ $x=1$
So, the length of the equal sides = (11 × 1) = 11 cm
Hence, the correct answer is 11 cm.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books