Question : The salaries of Ankur and Ankit are in the ratio 3 : 2. If the salaries of each are decreased by INR 2,500, the new ratio becomes 8 : 5. What is the sum of their salaries?
Option 1: INR 7,500
Option 2: INR 12,500
Option 3: INR 37,500
Option 4: INR 28,500
New: SSC MTS 2024 Application Form OUT; Direct Link
Don't Miss: Month-wise Current Affairs | Upcoming Government Exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: INR 37,500
Solution : Initial ratio of salaries = 3 : 2 Let the salaries be $3x$ and $2x$. Amount decreased from each = INR 2500 According to the question, $\frac{3x - 2500}{2x - 2500}=\frac{8}{5}$ ⇒$15x - 12500 = 16x - 20000$ ⇒ $x = 7500$ $\therefore$ Sum of their salaries $=3x + 2x = 5x= 5 × 7500= 37500$ Hence, the correct answer is INR 37,500.
Application | Cutoff | Selection Process | Preparation Tips | Eligibility | Exam Pattern | Admit Card
Question : The ratio of the salaries of Abhi and Monu is 6 : 11. If their salaries are increased by 10% and 12%, respectively, then what will be the new ratio of their salaries?
Question : The salaries of Kabir and Vicky are in the ratio 5 : 2. If the increments of 20% and 12% are allowed respectively in their salaries, then what will be the new ratio of their salaries?
Question : A sum becomes INR 12960 in 2 years at the rate of 4% per annum on simple interest. What is the sum?
Question : A sum becomes INR 5400 in 4 years at the rate of 20% per annum on simple interest. What is the sum?
Question : A sum becomes INR 27,720 in 7 years at the rate of 14 % per annum on simple interest. What is the sum?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile