3 Views

Question : The shadow of a tower standing on a level plane is 40 metres longer when the sun's altitude is 45°, than when it is 60°. The height of the tower is:

Option 1: $30(3+\sqrt{3})$ metres

Option 2: $40(3+\sqrt{3})$ metres

Option 3: $20(3+\sqrt{3})$ metres

Option 4: $10(3+\sqrt{3})$ metres


Team Careers360 21st Jan, 2024
Answer (1)
Team Careers360 23rd Jan, 2024

Correct Answer: $20(3+\sqrt{3})$ metres


Solution :
Given: Height of the tower = AB
Shadow at 60° = BC
Shadow at 45° = BD
CD = 40 metres
Let BC be $x$ m.
In $\Delta$ ABC, we have,
$\tan 60°=\frac{AB}{BC}$
⇒ $\sqrt{3}=\frac{AB}{x}$
⇒ $x=\frac{AB}{\sqrt{3}}$ -------(1)
In $\Delta$ ABD, we have,
$\tan 45°=\frac{AB}{BD}$
⇒ $1=\frac{AB}{x+40}$
⇒ $x+40=AB$
⇒ $x=AB-40$ ------(2)
From equations (1) and (2), we have,
⇒ $\frac{AB}{\sqrt{3}}=AB-40$
⇒ $AB=\sqrt3AB-40\sqrt{3}$
⇒ $AB=\frac{40\sqrt{3}}{\sqrt3-1}$
⇒ $AB=\frac{40\sqrt3(\sqrt3+1)}{2}$
⇒ $AB=20(3+\sqrt{3})$ metres
Hence, the correct answer is $20(3+\sqrt{3})$ metres.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books