Question : The simplified form of $(7 x+4 y)^2+(7 x-4 y)^2$ is:
Option 1: $98 x^2+32 y^2$
Option 2: $98 x^2+32 y^2-5 x y$
Option 3: $32 x^2+98 y^2$
Option 4: $98 x^2-32 y^2$
Correct Answer: $98 x^2+32 y^2$
Solution : $(7x + 4y)^2 = 49x^2 + 16y^2+ 2 × 7x × 4y = 49x^2 + 16y^2 + 56xy$ $(7x - 4y)^2 = 49x^2 + 16y^2 - 2 × 7x × 4y = 49x^2 +16y^2 - 56xy$ So, $(7x + 4y)^2 + ( 7x - 4y)^2$ $ = 49x^2 + 16y^2 + 56xy + 49x^2 + 16y^2 - 56xy$ $= 98x^2 + 32y^2$ Hence, the correct answer is $98x^2 + 32y^2$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{x^{3}+3y^{2}x}{y^{3}+3x^{2}y}=\frac{35}{19}$, what is $\frac{x}{y} =?$
Question : If $ p(x+y)^{2}=5$ and $q(x-y)^{2}=3$, then the simplified value of $p^{2}(x+y)^{2}+4pq xy -q^{2}(x-y)^{2}$ is:
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Question : What is the simplified value of: $\frac{1}{8}\left\{\left(x+\frac{1}{y}\right)^2-\left(x-\frac{1}{y}\right)^2\right\}$
Question : If $x:y=2:1$, then $(x^{2}-y^{2}) : (x^{2}+y^{2})$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile