Question : The simplified value of $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ is:
Option 1: $\sqrt 2$
Option 2: $\frac{1}{\sqrt2}$
Option 3: $\sqrt 3- \sqrt 2$
Option 4: $0$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ $=\frac{3\sqrt 2(\sqrt3 - \sqrt6) }{(\sqrt3 + \sqrt6)(\sqrt3 - \sqrt6)} - \frac{4 \sqrt 3(\sqrt{6}- \sqrt {2}) }{(\sqrt{6}+ \sqrt {2})(\sqrt{6}- \sqrt {2})} + \frac{\sqrt 6(\sqrt{3}- \sqrt 2)}{(\sqrt{3}+ \sqrt 2)(\sqrt{3}- \sqrt 2)}$ $=-\frac{3\sqrt 2(\sqrt3 - \sqrt6) }{3} - \frac{4 \sqrt 3(\sqrt{6}- \sqrt {2}) }{4} + \frac{\sqrt 6(\sqrt{3}- \sqrt 2)}{1}$ $= -\sqrt 2(\sqrt3 - \sqrt6) -\sqrt 3(\sqrt{6}- \sqrt {2}) +\sqrt 6(\sqrt{3}- \sqrt 2)$ $= -\sqrt6 + \sqrt12 -\sqrt{18}+ \sqrt {6} +\sqrt{18}- \sqrt 12$ $=0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=\sqrt3+\frac{1}{\sqrt3}$, then the value of $(x-\frac{\sqrt{126}}{\sqrt{42}})(x-\frac{1}{x-\frac{2\sqrt3}{3}})$ is:
Question : If $x=5–\sqrt{21}$, the value of $\frac{\sqrt{x}}{\sqrt{32–2x}–\sqrt{21}}$ is:
Question : $\triangle$XYZ is right angled at Y. If $\angle$X = 60°, then find the value of $(\sec Z+\frac{2}{\sqrt3})$.
Question : If $\theta$ is a positive acute angles and $\operatorname{cosec}\theta =\sqrt{3}$, then the value of $\cot \theta -\operatorname{cosec}\theta$ is:
Question : The value of exponential form of $\sqrt{\sqrt{2}\sqrt{3}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile